# Mathematical Functions

Mathematical functions not intrinsic to BASIC can be calculated as follows:

 Function BASIC Equivalent Secant SEC(X)=1/COS(X) Cosecant CSC(X)=1/SIN(X) Cotangent COT(X)=1/TAN(X) Inverse Sine ARCSIN(X)=ATN(X/SQR(-X*X+1)) Inverse Cosine ARCCOS(X)=ATN (X/SQR(-X*X+1))+ PI/2 Inverse Secant ARCSEC(X)=ATN(X/SQR(X*X-1))+SGN(SGN(X)-1)* PI/2 Inverse Cosecant ARCCSC(X)=ATN(X/SQR(X*X-1))+SGN(X)-1)* PI/2 Inverse Cotangent ARCCOT(X)=ATN(X)+ PI/2 Hyperbolic Sine SINH(X)=(EXP(X)-EXP(-X))/2 Hyperbolic Cosine COSH(X)=(EXP(X)+EXP(-X))/2 Hyperbolic Tangent TANH(X)=EXP(X)-EXP(-X))/+(EXP(X)+EXP(-X)) Hyperbolic Secant SECH(X)=2/(EXP(X)+EXP(-X)) Hyperbolic Cosecant CSCH(X)=2/(EXP(X)-EXP(-X)) Hyperbolic Cotangent COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1 Inverse Hyperbolic Sine ARCSINH(X)=LOG(X/SQR(X*X+1)) Inverse Hyperbolic Cosine ARCCOSH(X)=LOG(X+SQR(X*X-1)) Inverse Hyperbolic Tangent ARCTANH(X)=LOG((1+X)/(1-X))/2 Inverse Hyperbolic Cosecant ARCCSCH(X)=LOG(SGN(X)*SQR(X*X+1)+1)/X Inverse Hyperbolic Secant ARCSECH(X)=LOG(SQR(-X*X+1)+1)/X Inverse Hyperbolic Cotangent ARCCOTH(X)=LOG((X+1)/(X-1))/2